
228
04/2012	 en.sdjournal.org

DATA DEVELOPMENT GEMS

It just takes a line of code to produce a simple sta-
tistical graph in R. Using the plot() command, you
can quickly visualize relationships among two

variables of your choice. However, R offers much
more than the traditional graphics system. In this ar-
ticle, I will give an overview of both traditional and
high-level plotting functions in R, and I will show
how graphs created in R can be further improved
using Adobe Illustrator, one of the leading vector
graphics editors. In Illustrator, you can change al-
most every aspect of your graph and choose from a
wide variety of symbols, graphics styles, pens, pen-
cils and brushes, color spaces and modes; you can
also add raster images, apply three-dimensional ef-
fects and save your graph for both print and web
production, including animation in Adobe Flash Pro-
fessional. But let ś first start with the R basics, before
moving on to Illustrator.

Traditional graphics functions in R
This is the place where you´ll usually start off

when creating graphics in R. However, this is also
the place where you should make sure that you
code your graph sequentially from the beginning
(see Listings 1 and 2). Depending on your machine,
the plot() command will open a graphics device, for
example the X11 device on Windows, or the Quartz
device on Mac OS X. You start by calling plot() with
type=”n”, axes=FALSE, and empty x- and y labels.
This ensures that the device area has the correct size
but remains empty. After that, you sequentially add
elements to your plot. Points are added using the
points() command, axes and their labels using the
axis() command, titles and annotations using the ti-
tle() command, legends using the legend() com-
mand. You can also add model predictions and ref-
erence lines using lines(). Working sequentially is the

Using R in combination
with Adobe Illustrator CS6 for
professional graphics output
Producing professionally looking statistical graphics with R is straightforward
- but only if you know the capabilities and limitations of each graphics
package. Here, I give an overview of the most frequently used graphics
packages and show how output created with R can be “polished” further
using Adobe Illustrator CS6, the industry standard of vector graphics
editing. By combining R with Illustrator, you will be able to create even
more convincing statistical graphics for your target audience.

What you’ll learn:

•	 Graphics packages in R: tra-
ditional, trellis, grid

•	 Working with colours and transparencies
•	 Adding background images to R graphics
•	 Batch creation of pdf files
•	 Changing styles, fonts, colours

and elements in Illustrator
•	 Creating layered PDF files

What you should know:

•	 Basic object manipulations in
R (subsetting, updating)

•	 Syntax for R model formulae (y~x+z)
•	 Basic syntax of plot and xyplot

229
04/2012	 en.sdjournal.org

Using R in combination with Adobe Illustrator CS6 for professional graphics output

key to traditional graphics in R, because it allows you
to fine-control every element in your plot. The tra-
ditional graphics system is fine for plotting relation-
ships between a few variables, for example continu-
ous x and y variable (Figure 1), plus maybe one or
two factors. However, if you want to visualize more
complex relationships (say a four-way interaction),
you are much better off using high-level functions.

High-level graphics using the lattice
package

The lattice package and especially the xyplot()
function are my favorite choice when I want to in-
spect relationships among many variables at once
(see Figure 2a, d and Listings 3-5) . The lattice pack-
age has been developed by Deepayan Sarkar (In-
dian Statistical Institute, New Delhi). There is an ad-
ditionally very useful package, called LatticeExtra,
that contains further functions such as map plots,
smoothing lines with confidence intervals, and al-
lows adding layers to existing plots. Lattice graphs
split your data up into groups that are plotted in sev-
eral panels, as if you would slice up your data into
different subsections. Like an anatomist, you can see
structures in your data that you wouldn´t be able to
see otherwise. One of the most useful features of the
lattice library is that you can slice up numeric vari-
ables into intervals and use them as conditioning
variables in your plots (using the equal.count func-
tion). That way, you can inspect interactions among
numeric variables without having to invoke three-
dimensional plots (that would be much harder to
read). Let ś see how far you can get using xyplot: In
principle, you can select among one of the following
formulae for plotting:

y1+y2+y3+…+yn~x1|z1+z2+…+zn
y~x1+x2+…+xn|z1+z2+…+zn

y1~x1|z1+z2+…+zn, groups=u

The y and x variables are those that will be plotted
on the y and x axis, while z variables are conditioning
variables (they will be plotted in different panels; Fig-
ure 1a, d). Finally, u is a grouping variable for which dif-
ferent points and/or regression lines will be plotted.
Thus, it ś easy to plot relationships among, say, six or
seven variables at once. The only limitation is wheth-
er you´ll still be able to interpret the patterns you see.
Thus, there will usually be an upper limit to what you
will want to plot simultaneously without asking too
much of your readers. Further, you will of course need

enough replicates (data points) if you want to inspect
high-order interactions among variables.

The main problems faced by users of the lattice
package are usually: (1) the default colors and ap-
pearance are often not suitable for direct publica-
tion and (ii) it is less straightforward to add elements
to your plot, for example adding model predictions.

Both aspects can be cured using suitable code. In
Listing 3, I provide a graphics theme that you can
change according to your publication purposes. In
listing 4, I show how model predictions from a linear
mixed-effects model can be incorporated into a call
to xyplot (see also Figure 2a, d).

Grid graphics and the ggplot2 library
The grid graphics system has been developed by

Paul Murrell from the University of Auckland (New
Zealand). Lattice graphics also use the grid graph-
ics system. Here, I just mention that it ś possible to
fine-tune your existing lattice graphics using calls
to grid functions. The ggplot2 library, developed by
Hadley Wickham from University of Auckland (New
Zealand), is a stand-alone package for professional
graphics in R. In contrast to lattice, it is focused more
strongly on working with layers, and on producing
aesthetically appealing graphics. In Listing 5, I pro-
vide some examples and comparisons among these
approaches (Figure 2a, b).

Adding background images to existing plots
The readJPEG function, found in the jpeg library

(written and maintained by Simon Urbanek), can be
used to import JPEG images into R. These images
can be used as a background image using the ras-
terImage function (Figure 2c, Listing 5). Similarly, ex-
isting xyplot objects can be updated using the grid.
raster() function from the grid package to add a giv-
en image as a background into each panel of your
xyplot graph (Figure 2d).

Working with colors and font
Choosing the right colors for an R graph can be

challenging for many reasons. While it is easy to
create a graph consisting of just four colors (e.g.
red, green, blue, black), the choices are more dif-
ficult when 6, 8 or 12 different colors are needed.

230
04/2012	 en.sdjournal.org

DATA DEVELOPMENT GEMS

The package RColorBrewer, written by Erich Neu-
wirth (University of Vienna, Austria) provides a link
to ColorBrewer (colorbrewer2.org) where you can
select among ordered color sequences consisting
of 1-12 colors, where colors are easy to distinguish
from one another. In addition, you can use R ś built-
in color palettes (rainbow, heat.colors, terrain.colors,
cm.colors, topo.colors). Examples for working with
colors are given in listings 3, 4 and 5.

Selecting and applying fonts in R is easy in theory,
but very much system- and device-dependent. You
will most frequently use the postscriptFonts() com-
mand to choose among different fonts, but these
need to be installed properly on your system. Em-
bedding fonts (using the embedFonts command) in
a postscript or pdf file can also be tricky. In general,
I would recommend to work with standard fonts in
R (e.g. Helvetica, Arial, Times) and do the finer font
editing in Illustrator.

Exporting your graph to Illustrator
The easiest way of saving your graph(s) in R for

post-processing in Illustrator is to open the pdf() de-
vice (see Listing 1), then run your lines of code to cre-
ate your graph(s), and then close the pdf device us-
ing dev.off(). This allows you to save as many graphs
as you want for later processing; graphs can even be
created automatically using any of the apply() com-
mands, or (less efficiently) by using a for() loop. Make
sure to add the option useDingbats=FALSE in your
pdf command to ensure that symbols are rendered
properly inside the pdf. Examples for creating pdf
files from R are shown in Listings 1-5.

Post-processing a scatter plot in Illustrator
Once you´ve saved your graph in pdf (or post-

script) format, you ŕe ready to import it in Illustra-
tor. You´ll first be asked which page you want to im-
port. Placing several pages at once is possible using
publicly available Illustrator scripts (Apple Script or
Java Script); you can find these by performing a web
search for “multi-page pdf Illustrator”.

But for now let ś assume you have imported just
one single pdf graph (as in Figure 1a, created using
Listing 2). After importing it, several operations are
necessary before you can enjoy the full editing ca-
pabilities of Illustrator CS6:

(1) select all objects
(2) release clipping masks (object panel)

Next, create separate layers for all objects of sim-
ilar types. In your final image, there will be a layer
containing all text elements, another layer contain-
ing axes, boxes etc., and one containing graph ob-
jects (plotting symbols, bars, etc).

In our example (Figure 1a), use the magic wand
tool with 90% tolerance (double click for options)
several times, pressing “shift”, to select all dots of the
graph; cut and paste objects into their original posi-
tion in a new layer (name this “dots layer”).

Use select/objects/text objects to select all text,
cut the text objects and paste them in their original
positions on a new layer (name this “text layer”). Se-
lect all objects on this layer and change your font as
desired (e.g. Gill Sans MT, 18 or 36 Pt for tickmarks vs.
axis labels). To adjust the size of your plotting area,
use the artboard tool. Go to “Options” and select
“automatically fit to graphics dimensions”.

Use select/objects/similar appearance to select
the axes of the graph (using select/objects/similar
appearance). Name this layer “axes layer”.

Now you should have an Illustrator file with the
following layers: (1) dots layer; (2) text layer; (3) axes
layer. You are now ready to create new versions of
your graph (Figure 1b, c, d).

For Figure 1b, go to the dots layer, select all ob-
jects in this layer (fix all other layers) and change the
fill color to grey and outline color to “none”. Then
create a new background layer, use the rectangular
grid tool and add a grid at exactly the tickmark po-
sitions. Be sure to always work using smart guides
(menu: view/smart guides). Alternatively, you can
also select all tick marks and transform them appro-
priately (possibly after copying them to a new layer,
inserting them at their original positions). Next, se-
lect the non-linear regression line and apply a line
style of your choice.

For Figure 1c, start by working on the “axes layer”.
Select a 5 Pt rounded calligraphic brush to change
the appearance of the axis tick marks. Select the axes,
change their width to 5 Pt and apply arrowheads
of your choice (with 80% scaling). Then select the

231
04/2012	 en.sdjournal.org

Using R in combination with Adobe Illustrator CS6 for professional graphics output

non-linear regression line; load a brushes library (e.g.
bristle brushes) and select a bristle brush of your choice
to modify the appearance of the regression line. Play
around with the transparency of the brush to change
the appearance as you wish. Go to the “dots layer” and
open the “effects” panel; select “convert to form/el-
lipse”. Use the options to select an additional width of 4
Pt each. Now select all dots and open the menu “edit/
colors”. Use a palette (e.g. “leaves”) to change the colors
of all dots. Finally, create a new layer in the background.
Create an art brush (e.g. using an imported, traced im-
age) and add your favorite background to the image.
Open a symbols library of your choice and add a sym-
bol into the upper left corner of your graph.

Finally, Figure 1d has been created in a similar
way, but applying scribble effects to the ellipse-
transformed dots in the dots layer with the follow-
ing options:

•	 angle 30°
•	 path overlap 0 mm
•	 variation for path overlap 1.76 mm
•	 stroke width 0.5 mm
•	 curviness 20%
•	 variation for curviness 50%
•	 spacing 0.5 mm
•	 variation for spacing 0.5 mm

It is helpful to make frequent use of the appear-
ance panel; this way, you can always change the
effects you applied later on. Your scribble effect
should appear low down in the appearance panel
when you select any dot in your graph.

Next, use a Filbert bristle brush to change the ap-
pearance of the regression line and the axes. Finally,
go to the text layer and choose a handwriting font,
e.g. Segoe Script.

Post-processing bar plots and box-and-
whisker plots in Illustrator

With categorical explanatory variables, you will
usually end up with a bar plot or a box-and-whisker
plot in R. In many cases, you may wish to edit these
types of graphs using Illustrator. In principle, the
same steps described above are necessary: Move
objects to different layers, then apply styles as de-
sired. Figure 3a shows an example created using R ś
barplot() help page. While this Figure already looks
convincing, you may wish to change the appearance

of the bars for publication. For example, you can add
a scribble effect to the bars (Figure 3b), or even make
your bars appear three-dimensional (Figure 3c). The
three-dimensional appearance of bars in Figure 3c
can be added using the extrude effect (Effect/3D/
Extrude and Bevel) with the following options:

•	 Angle 45°
•	 Perspective 37°
•	 Extrude depth 50 Pt
•	 Surface Shading: Plastic
•	 Light intensity 100%
•	 Ambient light 26%
•	 Highlight intensity 60%
•	 Highlight size 90%
•	 Blend steps 25

Finally, create a new layer, draw a rectangle and
apply a custom style (e.g. plastic foil effect).

Web and print publication of your
illustrations

You should now have seen that almost anything
is possible when combining R ś powerful graphics
engines with Adobe Illustrator ś vector graphics
editing capabilities. At this stage, you should con-
sider also the intended publication medium for your
graphical output. For web publishing, you can di-
rectly add slices to your Illustrator image and hand
your file over to Adobe Fireworks or Flash Profession-
al to add interactivity (e.g. buttons). If you intend to
publish for print media, you´ll need to make sure
that your file is in CMYK color space. Then place your
images in Adobe InDesign or other suitable layout
software. For Microsoft Office 2010 or earlier, you can
save your files from Illustrator in PNG format and
work almost without loss of image resolution. How-
ever, such an approach is usually only recommend-
ed for PowerPoint presentations or screen devices.
If you want to use your content in OpenOffice Draw,
the best solution is to export your images as EPS files
from Illustrator. Finally, if you want to edit existing Il-
lustrator files in a freeware such as InkScape, you can
use AI or PDF files, but sometimes fonts are replaced
by filled contours. These issues are likely to improve
in later versions of InkScape.

Overall, the combination of R and Illustrator has
worked perfectly for me over the last seven years,
and in combination with other elements of Adobe ś
CS6, this software duo is almost unbeatable.

232
04/2012	 en.sdjournal.org

DATA DEVELOPMENT GEMS

Listing 1: R code showing the use of the traditional graphics system in R to create a pdf file of known
dimensions.

Create some example data
x=1:10
y=(1:10)^2

Open a PDF device (output will be written into this file)
pdf(“myfile.pdf”,width = 2, height = 2,pointsize=12)

Define sizes of margins and number of margin lines
par(mar=c(3.1,3.1,0.2,0.2),mgp=c(2,0.3,0))

Create an empty plot
plot(x,y,type=”n”,axes=FALSE,xlab=””,ylab=””,
las=T,tck=0.02,pch=16,lwd=1.5,cex.lab=1.5,cex.axis=1.3)

Now sequentially add elements to the empty plot
points(x,y,pch=16)
title(xlab=”Xlab”,ylab=”Ylab”,las=T)
axis(1,tck=0.02,las=T)
axis(2,tck=0.02,las=T)
box()

when finished, close the PDF device
dev.off()

Listing 2: R code to produce graphical output using the standard graphics system. A PDF is created for
later editing in Illustrator.

#set the random number generator to a reproducible state

set.seed(1000)
create sample data by sampling from a uniform distribution
then use a poisson distribution to create counts of objects
to be plotted on the y axis
biomass=sort(runif(100,1,100))
y = 0.2+0.1*biomass
count=rpois(length(y),y)

Now create your graph using the Windows (X11) device:
par(las=1,bty=”l”,lwd=2,tck=0.02)
plot(count~biomass,pch=16,type=”n”,axes=F,xlab=””,ylab=””)
points(count~biomass,pch=16,col=rainbow(length(count),start=4/6))
axis(1)
axis(2)
title(xlab=”Biomass”,ylab=”Count”)
box()

finally, add a blue line with model predictions
m1=glm(count~biomass,poisson)
lines(biomass,predict(m1,type=”response”),col=”blue”,lwd=2)

copy the content of the current device to a PDF device
depending on your system, you may use different font families,
but this often doesn´t work properly and font editing should be
done in Illustrator.
Be sure to turn off the “Dingbats” font because symbols
may otherwise render wrongly on some systems.

dev.copy2pdf(file=”myfile.pdf”,useDingbats=FALSE,family=”sans”)

233
04/2012	 en.sdjournal.org

Using R in combination with Adobe Illustrator CS6 for professional graphics output

Listing 3: R code defining a graphics theme to customize trellis graphics in the lattice library

install.packages(c(“RColorBrewer”,”latticeExtra”))

my.theme=function(colors,lty,pch=16,cex=1.5,lwd=2,fill=colors,alpha=1,...){

require(latticeExtra)
theme <- custom.theme(symbol = colors, fill = colors, region = colors)
theme <- modifyList(theme, list(
axis.line = list(col = “black”,lwd=2),
axis.text = list(cex = 1.5, col = “black”),
par.sub.text= list(cex = 1.5, col = “black”),
par.main.text= list(cex = 1.5, col = “black”),
par.xlab.text=list(cex = 1.5, col = “black”),
par.ylab.text=list(cex = 1.5, col = “black”),
par.zlab.text=list(cex = 1.5, col = “black”),
panel.background = list(col = “white”),
reference.line = list(col = “darkgrey”),
strip.background = list(col = c(“grey80”, “grey70”, “grey60”)),
strip.shingle = list(col = c(“grey60”, “grey50”, “grey40”)),
strip.border = list(col = “black”,lwd=2), add.text = list(cex = 1)))

theme=modifyList(theme,
simpleTheme(alpha=alpha,
col=colors,
cex=cex,
pch=pch,
lwd=lwd,
lty=lty,
fill=colors,
col.points=colors,
col.line=colors)
)
}

save the function as an R object (for later usage):
capture.output(my.theme,file=”my.theme.R”)

Listing 4: R code to produce graphical output using the trellis graphics system.

First, load the required packages

install.packages(c(“RColorBrewer”,”latticeExtra”))
library(nlme)
library(lattice)
library(RColorBrewer)
source(“my.theme.R”)

load a sample dataset (body weight growth in rats)
data(BodyWeight)

reorder the response variable in the data frame
BodyWeight$Rat=ordered(BodyWeight$Rat,levels=1:16)

now set up a mixed-effects model, where weight is the
response variable, and Diet and Time are the
explanatory variables;
random effects are included for Time (random slopes)
and the individual rats (random intercepts)

m1=lme(weight~Time*Diet,random=~Time|Rat,data=BodyWeight)

calculate predictions from this model:
mygrid <-
expand.grid(Time = do.breaks(range(BodyWeight$Time),5),
Rat=unique(BodyWeight$Rat))

m1.pred <-
cbind(mygrid,weight = predict(m1, newdata = mygrid))

orig <- BodyWeight[,c(“Time”, “Rat”,”weight”)]

234
04/2012	 en.sdjournal.org

DATA DEVELOPMENT GEMS

combined <-
make.groups(predicted=m1.pred,original = orig)

select colours using the palettes “Set1” and “Dark2”
in RColorBrewer
mycolors=c(brewer.pal(8,”Set1”),brewer.pal(8,”Dark2”))

Now create a series of xyplots, using different colour options:
xyplot(weight~Time,BodyWeight,type=c(“p”,”smooth”),groups=Rat,auto.key=list(columns=4),
par.settings=my.theme(colors=mycolors,lty=1:16,pch=c(16,17,1,2,19:25)))

xyplot(weight~Time,BodyWeight,type=c(“p”,”smooth”),groups=Rat,auto.key=list(columns=4),
par.settings=my.theme(colors=heat.colors(16)))

xyplot(weight~Time,BodyWeight,type=c(“p”,”smooth”),groups=Rat,auto.key=list(columns=4),
par.settings=my.theme(colors=rainbow(16,start=4/6)))

xyplot(weight~Time,BodyWeight,type=c(“p”,”smooth”),groups=Rat,auto.key=list(columns=4),
par.settings=my.theme(colors=terrain.colors(16)))

xyplot(weight~Time,BodyWeight,type=c(“p”,”smooth”),groups=Rat,auto.key=list(columns=4),
par.settings=my.theme(colors=cm.colors(16)))

now plot the predictions from the model
together with the original data;
add transparency

xyplot(weight ~ Time | Rat,
data = combined, groups = which,
type = c(“p”,”l”),auto.key=T,
par.settings=my.theme(alpha=c(1,0.5),cex=1,lwd=1,colors=c(“blue”,”red”),lty=c(1,2),pch=c(16,17)))

Listing 5: Producing graphical output using the ggplot2, lattice and grid packages. This also shows how
to incorporate JPEG images as a background.

install.packages(c(“ggplot2”,”grid”,”jpeg”))
library(“ggplot2”)
library(“grid”)
library(“nlme”)
library(“jpeg”)
source(“my.theme.R”)

theme_set(theme_bw())
theme_update(panel.grid.minor = theme_blank(),panel.grid.major=theme_blank())

oplot <- ggplot(BodyWeight, aes(Time, weight, group = Rat)) +
geom_line()

oplot + geom_line(data = m1.pred, colour = “darkblue”, alpha=0.5,size=1)

##
JPEG image as a background (load the jpeg library first)

img <- readJPEG(system.file(“img”, “Rlogo.jpg”, package=”jpeg”))
plot(1:2, type=”n”)
rasterImage(img, 1.2, 1.27, 1.8, 1.73)

x1=xyplot(weight ~ Time | Rat,
data = combined, groups = which,
type = c(“p”,”l”),auto.key=T,
par.settings=my.theme(alpha=c(1,0.5),cex=1,lwd=1,colors=c(“blue”,”red”),
lty=c(1,2),pch=c(16,17)))

update(x1,
panel=function(x,y,...){
grid.raster(img,0.5,0.5,0.5,0.5)
panel.xyplot(x,y,...)
})

235
04/2012	 en.sdjournal.org

Using R in combination with Adobe Illustrator CS6 for professional graphics output

Figure 1
(a) The original Figure as created in R using Listing
2. (b) The same figure in “textbook style”, with a
grey grid added to the background and improved
point, font and line styles. (c) The original figure has
been completely re-colored, and grass shapes have
been added using an art brush. (d) “Handwritten”
appearance of the graph, using scribble effects,
bristle brushes and an appropriate font type.

Figure 2
(a) A lattice plot created using Listings 3 and 4. Note
that predictions from a linear mixed-effects model
have been added to each panel, including different
transparencies for lines and symbols. (b) The same
dataset, plotted using the ggplot function from the
ggplot2 library (Listing 5). (c) and (d) graphs with an
added background JPEG image (Listing 5).

Figure 3
(a) Original output created using code provided
in the barplot help file. (b) Scribble effects and
horizontal reference lines added in Illustrator; (c)
Three-dimensional appearance added using the
effects panel in Illustrator.

0 20 40 60 80 100

0

5

10

15

Biomass

C
ou

nt
0 20 40 60 80 100

0

5

10

15

Biomass
C

ou
nt

0 20 40 60 80 100

0

5

10

15

Biomass

C
ou

nt

0 20 40 60 80 100

0

5

10

15

Biomass

C
ou

n
t

(a) (b)

(c) (d)

Time

w
ei

gh
t

300
400
500
600

0 20 40 60

2 3

0 20 40 60

4 1

8 5 6

300
400
500
600

7

300
400
500
600

11 9 10 12

13

0 20 40 60
15 14

0 20 40 60

300
400
500
600

16

300

400

500

600

0 10 20 30 40 50 60
Time

w
ei

gh
t

1.0 1.2 1.4 1.6 1.8 2.0

1.0

1.2

1.4

1.6

1.8

2.0

Index

1:2

Time

w
ei

gh
t

300
400
500
600

0 20 40 60

2 3

0 20 40 60

4 1

8 5 6

300
400
500
600

7

300
400
500
600

11 9 10 12

13

0 20 40 60
15 14

0 20 40 60

300
400
500
600

16

predicted
original

predicted
original(a) (b)

(c) (d)

1 2 3 4 5 6 7 8 9 10 11

0
5

10
15

20

1 2 3 4 5 6 7 8 9 10 11
0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11

0

5

10

15

20
(a) (b) (c)

Figure 1: Editing a traditional scatterplot in Adobe
Illustrator CS6

Figure 2: Examples for high-level plotting
capabilities of RFigure 3: Editing a barplot in Adobe Illustrator CS6

About the author

Christoph Scherber

Christoph Scherber has been using R for
statistical computing since 10 years. He started
to use Illustrator with version CS2 (2005) to
finalize R graphical output for print and online
publication. He is giving regular university
courses on statistical computing with R and has
published in a wide range of scientific journals.

